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Recently, Pantina and Furst �Phys. Rev. Lett. 94, 138301 �2005�� experimentally demonstrated the existence
of tangential forces between bonded colloidal particles and the capability of these bonds to supporting bending
moments. We introduce a model to be used in computer simulations that describes these tangential interactions.
We show how the model parameters can be determined from experimental data. Simulations using the model
are in agreement to the measurement by Pantina and Furst. Application of the model to an aggregate with
fractal structure leads to more realistic behavior than using classical approaches only.
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I. INTRODUCTION

The structure of colloidal aggregates is important in vari-
ous applications �e.g., pharmaceuticals, food processing,
nanoparticle synthesis�. To address structural aspects micro-
simulation of aggregating colloidal particles are an important
and growing field in colloid science. Microsimulation of ag-
gregates allows to investigate the structural evolution of ag-
gregates by tracking the trajectories of the constituent pri-
mary particles. These trajectories are obtained from solving
Newton’s equation of motion for all the aggregates primary
particles. In the future, insight in structure formation may be
exploited to tailor aggregate structures by optimal process
design. In the literature some work can be found on simulat-
ing aggregate structure evolution in hydrodynamic environ-
ments. Generally, one must distinguish the hydrodynamic
and the particle interaction forces. Initial attempts of struc-
tural modeling have been carried out by Doi and Chen �1,2�.
For the hydrodynamic forces they used the so-called free
draining approximation according to which the hydrodynam-
ics forces on the particles are strongly simplified. Each par-
ticle experiences only Stoke’s drag force. Thus, all flow field
perturbations induced by the particles, which potentially af-
fect the flow around neighboring particles, are neglected. For
the particle interaction they also used a simple model where
sticking particles can roll on each other and the bond be-
tween two particles breaks if the normal forces exceed a
critical value. Higashitani et al. �3� performed simulations,
where the hydrodynamic and interparticle forces are consid-
ered in much more detail. Interparticle forces were obtained
by the classical Derjaguin, Landau, Verwey, Oberbeek
�DLVO� theory �4�. For particles in contact they used the
model of Cundall and Strack �5� which is widely used in
discrete element modeling of granular matter �6�.

Regarding the hydrodynamic forces they accounted for
screening of inner particles from the flow field by means of
detailed geometrical computations. Similar studies have been
done by Fanelli et al. �7,8� who also used a discrete element
method �DEM� and DLVO forces to simulate dispersions of
colloidal aggregates. Harada et al. �9� examined the struc-

tural change of nonfractal clusters. To compute the hydrody-
namic forces they used Stokesian dynamics �10,11� which
allow computation of the full, hydrodynamic interaction on
the basis of the Stokes equation. As direct particle interac-
tions they considered a retarded attractive van der Waals po-
tential. Most of these studies assume normal forces between
particles.

There are only a few simulation studies where non-normal
forces are included. In the work by Higashitani et al. �3� the
contact model of Cundall and Strack �5� is employed. That
model is designed to capture sticking and sliding friction.
However, as it will be shown, the classical Cundall-Strack
model is not capable of qualitatively describing the experi-
mentally observed behavior of bonded colloidal particles. In
the field of disordered networks, e.g., gels and glassy struc-
tures, some models for tangential forces capable of support-
ing bending moments were derived �see, e.g.,�12–15��. Pota-
nin �16� adopted the main ideas of these models to apply
them in the context of colloidal aggregates. He used a Hamil-
tonian used in Born’s model for the elasticity of microscopic
networks �17�. This model was applied to the simulation of
aggregates under static conditions but is not suited to de-
scribe the dynamic behavior, e.g., the rotation of an aggre-
gate, correctly. In subsequent work �18�, the author calcu-
lated the tangential forces based on a Hamiltonian derived by
Kantor and Webman �14�. This Hamiltonian based on a
three-body approach. The bending energy is proportional to
the variation of the angle between two neighboring bonds.
With this approach the breakage behavior of aggregates
formed by diffusion limited cluster aggregation �DLCA� was
investigated. However, this approach does not allow irrevers-
ible rearrangement of particles. Thus, the approach is re-
stricted to situations where restructuring effects are irrel-
evant. West, Melrose, and Bell �19� presented another
approach to include tangential and bending forces. They re-
placed the particles by a stiff trimer of particles and the basic
colloidal bond was taken as a superimposition of 3�3
sphere interactions. Botet and Cabane �20� introduced a
model where the bond between two spherical colloidal par-
ticles is described by springs which connect pins on the
spheres surface. These pins are randomly distributed over the
spheres. Whenever the distance between two pins on differ-
ent spheres is smaller than a characteristic threshold, a spring
between these pins will be initiated. The two pins cannot
form another bond as long as the bond is present. If a spring
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exceeds a maximum elongation the spring will be destroyed.
That spring causes both normal and tangential interaction
between the spheres. A comparison of that model to the one
proposed in this work will be given in Sec. IV C.

Recently, experimental evidence of bending moments has
been presented by Pantina and Furst �21�. They measured
that even a single bond is capable of supporting a bending
moment. Except the model of Botet and Cabane �20�, none
of the above-mentioned models can describe both observed
effects. In this paper we present a model to be used in DEM
simulations which is able to describe the phenomena found
by Pantina and Furst �21�. We furthermore show that all nec-
essary model parameters can directly be obtained from their
experiments. We will show that in some special cases our
model reproduces the Hamiltonian used in �14� and we will
compare our model to the models mentioned above.

The organization of the paper is as follows. Section II
summarizes the basic experimental findings of Pantina and
Furst regarding tangential forces as they are of major impor-
tance to the model developed in this contribution. In sec. III
we will briefly revisit the classical DLVO forces. Section IV
introduces the model for tangential forces, presents the
method to determine the model parameters and compares our
model to previous ones. Section V explains the basic simu-
lation technique and shows simulation results. Finally, Sec.
VI summarizes our findings and draws some conclusions.

II. EXPERIMENTAL OBSERVATIONS BY PANTINA
AND FURST

In their experiments Pantina and Furst �21� used a linear
chain of polymethylmethacrylate �PMMA� particles im-
mersed in an MgCl2 aqueous solution. The terminal particles
of the chain were fixed by optical tweezers and the middle
particle was pulled by another optical tweezers perpendicular
to the chain direction. If only central forces acted between
the particles the formation of a triangular structure can be
expected. However, it turned out that the positions of the
particles are in good agreement with the shape expected from
a thin elastic rod

y�x�
FBend

= −
1

EI
�L

4
x2 −

�x�3

6
� . �1�

Here y�x� is the deflection as a function of the position x, L
is the length of the aggregate, E is the Young modulus, and I
is the second moment of area. This is clear evidence that
bonds between colloidal particles are capable of supporting
bending moments. Furthermore, they measured the bending
rigidity, �, defined as the constant of proportionality between
the deflection � of the aggregate and the applied force,

FBend = �� . �2�

Additionally, they found that ��L−3 as expected from Eq.
�1�. The bending rigidity can be expressed by the relation

� = �0� a

L
�3

, �3�

where a is the particle radius and �0 is the bending rigidity
per bond. They measured these quantities as functions of the

MgCl2 concentration. Furthermore they found that there is a
critical bending moment Mc, above which the particle begins
to slide and rearrangements of particles occurs.

Pantina and Furst �21� presented a possible explanation
for the tangential forces in terms of the Johnson-Kendall-
Roberts �JKR� theory for adhesive surfaces. They related the
single bond rigidity �0 to the work of adhesion Wsl derived
from the JKR theory and to the Young modulus of the par-
ticles. In subsequent work, Pantina and Furst �22� general-
ized that theory to the case that divalent ions are present. In
that case ion bridges between the spheres appear which in-
creases the attraction between the particles and leads to a
higher bending rigidity.

III. DLVO FORCES

Let us briefly revisit the DLVO theory. The first ingredi-
ents of the DLVO theory are van der Waals forces. In the
framework of the nonretarded Hamaker approximation, the
mutual interaction potential between two particles can be
found in standard literature �e.g.,�4,23��:

V�R�vdw = −
A

6
� 2a2

R2 − 4a2 +
2a2

R2 + ln�R2 − 4a2

R2 �	 , �4�

where R is the center-center distance between two particles
and A is the Hamaker constant, depending on particles’ and
fluid’s properties. The second ingredient is the electrostatic
double layer theory. Here we use the Derjaguin approxima-
tion with the assumption of constant surface potential. The
mutual interaction potential can again be found in the litera-
ture �4,23�:

V�R� = 2��a�0
2 ln
exp�− 	�R + a��� . �5�

Here � is the electric permittivity of the carrier fluid, �0 is
the surface potential, and 	 is the Debye-Hueckel parameter
defined as

	 =� e2

�kBT

i=1

N

nizi
2, �6�

where e is the elementary charge, kB is the Boltzmann con-
stant, T is the temperature, ni is the ion concentration of the
ith ion species, and zi is the corresponding valency. The in-
verse of the Debye-Hueckel parameter is a measure for the
magnitude of the screening length for electric fields in an
electrolyte solution. Besides these standard ingredients we
use an additionally repulsive short-range force �Born repul-
sion force�, making sure that particles cannot collide. We use
a formula derived by Feke et al. �24�,

VBorn =
AN

R̃
� R̃2 − 14R̃ + 54

�R̃ − 2�7
+

60 − 2R̃2

R̃7
+

R̃2 + 14R̃ + 54

�R̃ + 2�7
� .

�7�

In this expression R̃=R /a is the ratio of the center-center
distance and the particle radius. As discussed by Feke et al.
�24� N lies in the interval 10−18 to 10−23. In our simulations
we used N=10−23. Figure 1 shows the interaction potential
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between two particles for conditions corresponding to the
experiments by Pantina and Furst �21�. As expected for this
parameter set, the aggregation of particles is not hindered by
an energy barrier and the colloid is in the regime of fast
coagulation �4�. The equilibrium surface-surface distance,
that is the position of the potential minimum, is typically in
the order of some Ångstrom.

IV. TANGENTIAL-FORCE MODEL

A. Model

There is quite a number of tangential-force models avail-
able for DEM simulations. For example, the models by Haff
and Werner �25�, Walton and Brown �26� or Cundall and
Strack �5�. For some detail on these models the reader is
referred to �27�. For this work the main deficiency of all
these models is that most of them are not capable of support-
ing bending moments between bonded particles, except the
ones which will be discussed and compared to our model in
Sec. IV C. In the following we propose a tangential-force
model, similar to that by Cundall and Strack, which can re-
produce the phenomena described in Sec. II. In the Cundall-
Strack model a spring �ij with rigidity kt will be initialized
when two particles, i and j, get into contact. This spring
grows proportional to the relative tangential velocity at the
contact point,

��t� = �
t0

t

dt�vt�t�� ⇒ �̇ = vt. �8�

Here t0 is the time when the particles get into contact. The
relative tangential velocity is given by

vt = �v j − vi�t + a��j + �i� � nij , �9�

where nij is defined as �r j −ri� / �r j −ri�. The subscript t de-
notes the projection of the relative velocity onto the tangen-
tial plane. If the force due to the tangential spring exceeds an
upper bound, which in the work by Cundall and Strack �5� is
the Coulomb friction 
Fn, the spring will be set to

� = 

Fn

kt

�

���
, �10�

where 
 is the friction coefficient. To make sure that the
tangential force acts only in tangential direction, the Cundall-
Strack spring is mapped to the tangential plane perpendicular
to nij after each time step. The tangential forces and torques
acting on the ith and the jth particle are given by

Ft,i = kt�, Mi = RiFt,i � nij , �11�

Ft,j = − kt�, M j = − RjFt,j � nij . �12�

This model is able to capture a lot of phenomena such as
sliding friction and sticking friction. However, it is not able
to support a bending moment between two bonded particles,
which becomes obvious by the following example. We as-
sume a fixed �no translation or rotation� particle bonded to a
second particle as sketched in Fig. 2. An external force per-
pendicular to the center-center line of the particles acts on
the second particle. Now we look for a static solution of the
evolution equations, in which all resulting forces and mo-
ments have vanished. From Eqs. �11� and �12� immediately
follows that this is only the case if �=0. This in turn means
that the whole external force must be equilibrated by the
normal forces between the particles and this can only be the
case if the center-center line is finally parallel to the direction
of the external force. However, this means that the bond
cannot support any bending moment. In order to derive a
similarly simple model, however capable of supporting
bending moments, we use the following reasoning: When
two particles get in contact, we introduce two thought rods
rigidly connected to one particles center and reaching to the
center of the other particle as sketched in Fig. 3. Between the
end point of the rod and the center of the other particle a
spring will be initialized. This spring grows proportional to
the relative tangential velocity between the rods end points
and the particle center. The evolution equations for the
springs are then

�̇ij = �v j − vi�t − ��i � nij�2a , �13�
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FIG. 1. Interaction potential between two equal spherical par-
ticles of radius a=0.735 
m. The potential comprises attractive van
der Waals interactions with a Hamaker constant of A=0.062 eV,
repulsive electrostatic interactions in a 150 mM MgCl2 aqueous
solution, a surface potential of �0=40 mV, and the Born repulsion
where N is assumed to be N=10−23.

Fbend Fbend

φ

FIG. 2. Example for the bending torque, the lower particle is
fixed and on the upper particle acts as a tangential force �left-hand
side�. If the bond between the particles is able to support a bending
moment, a stationary angle ��� /2 between the original contact
line and the stationary contact line should be reached.
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�̇ ji = �vi − v j�t + ��j � nij�2a , �14�

where �ij, � ji are defined in Fig. 3. The forces and moments
acting on the particles are therefore

Fi = kt��ij − � ji�, Mi = 2aktnij � �ij , �15�

F j = kt�� ji − �ij�, M j = − 2aktnij � � ji. �16�

Equivalent to the Cundall-Strack model both tangential
springs are mapped to the plane perpendicular to nij after
each time step. The springs stop extending if its elongation
exceeds a maximum value �max. Unlike the model of Cundall
and Strack, this model is able to support bending moments.
Let us demonstrate that by the same example as above.

By solving the steady-state equations one finds in the case
of small deflections for the reorientation angle �,

� =
FBend

kt2a
. �17�

Note that our model has some similarity to a theoretical ap-
proach introduced in �28� where a random network of
springs �normal and tangential� was used to predict the elas-
tic moduli for disordered packings of interconnected spheres.
Here the tangential spring stiffness was determined by the
predictive model of Pantina and Furst �21,22�.

We assume the model to be valid also for nontenuous
aggregates as long as pairwise contact forces can be as-
sumed. In this contribuition we content ourselves with poly-
meric primary particles as investigated in �21�. Whether our
model is also applicable to other types of particles �e.g., in-
organic and surfactant-coated colloids� cannot be revealed by
the model itself but must be clarified experimentally.

B. Parameter determination

The introduced model contains two parameters. The
spring stiffness kt and the maximum spring length �max. Both
parameters can be determined by the experiments presented
in �21�. As shown in Appendix B the static shape of a linear
chain of particles under a bending stress is given in leading
order approximation by

y�x�
FBend

= −
1

8a3kt
�L

4
x2 −

�x�3

6
� , �18�

where L is the center-center distance of the first and the last
particle in the chain. By comparison with Eq. �1� one finds

EI = 8a3kt. �19�

From the elongation of the chain, �=y�0�−y�L /2�, one finds
by comparison with Eq. �2� �=192�a /L�3kt and therefore
from �3�,

kt =
�0

192
. �20�

Using Eq. �20� one directly obtains the model parameter for
the tangential stiffness kt from the measured value �0. The
value of �max can be obtained from the measurement of the
critical bending moment Mc in �21�. The bending torque act-
ing on a particle is given by Eq. �15� or �16�. Since nij and �ij
are perpendicular to each other �max must be

�max =
Mc

2akt
. �21�

Thus, all parameters of the force model can be determined
from experimental data. Alternatively, the predictive formu-
las derived by Pantina and Furst �21,22� for the single bend
rigidity �0 may be used to estimate the model parameters.

C. Comparison to other models

In �18� a model derived by Kantor and Webman �14� was
applied to computer simulations of two-dimensional colloi-
dal aggregates in shear flows. That model assumes that the
contribution of tangential deformation to the strain energy is
proportional to

E � 
i,j,k

�ijk
2 , �22�

where �ijk is the change in the angle between the bonds
�i , j� and �i ,k� connected to particle i. The contribution to the
interaction force can be described by

Fij = − �
k

�ijknik · �nij · nik� . �23�

It is mentioned in �18� that a chain of particles connected by
such forces behaves like a thin elastic rod with the same
length. As shown in Appendix A, our model leads in the case
of a linear structure �i.e., every particle is bonded to a maxi-
mum of two other particles� to an elastic equilibrium energy
of

E = a2kt
i

�i, �24�

where �i denotes the change of the angle between the two
bonds ending on particle i. Due to the fact that �24� and �22�
are equivalent, the equilibrium elastic deformation of our
model is also equivalent.

The main difference between the two models is that our
model takes only pairwise interactions into account, while

Particle j

Particle i Particle i

Particle j

ξji

ξij

vi

ωj

FIG. 3. Sketch of tangential-force model. �a� When two particles
get in contact, two thought rods are initialized. The rods are rigidly
connected to the center of one particle and reach the other particles
center. �b� According to the tangential movement of the particles,
the springs �ij and � ji will be elongated. The arrows denote the
direction of the vectors �ij and � ji.
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the model by Kantor and Webman �14� is a three particle
interaction model. The tangential forces and the bending en-
ergy are there related to the change of angles between neigh-
boring bonds. However, one would expect that the energy is
stored directly in the bonds. It remains unclear why the angle
between two different bonds is the measure for the elastic
energy. Although the same behavior is observed in our pro-
posed model, the reason is quite obvious. The energy is di-
rectly stored in the bonds but neighboring bonds are related
due to the equilibrium conditions. In contrast to the model of
Kantor and Webman the proposed model is suited to describe
nonelastic displacements of the bonds, which occur if the
maximum supported bending moment is reached. Further-
more, the tracking of angles between all bonds ending on the
same particle may cause much higher implementatory �and
possibly computational� effort compared to the proposed
model.

To avoid the computational problems caused by tracking
of the angles, West, Melrose, and Ball �19� proposed a model
where the basic colloidal unit is replaced by a trimer of stiff
spheres and the interactions are assumed as superposition of
3�3 pairwise interacting central forces. Depending on the
relative orientation of the trimers, bonds between two trimers
are able to support bonding moments. Contrary to our pro-
posed model this only provides qualitative information. Be-
sides, no relation between experimental data and model pa-
rameters is available. Furthermore, replacing one particle by
three particles leads to a higher computational effort. Never-
theless, the ansatz of West, Melrose, and Ball is probably
superior to our model for the simulation of colloids contain-
ing nonspherical primary particles.

The model of Botet and Cabane �20� is in principle able to
capture the effect observed by Pantina and Furst �21�. They
modeled the interactions between two spheres by a number
of springs connected to pins which are randomly distributed
over the spheres. In comparison to our model the model of
Botet and Cabane �20� consumes much more computational
resources in order to handle the pins and springs. Further-
more, the estimation of the model parameters, i.e., number of
pins, spring stiffness, equilibrium, and breakage lengths,
seemed to be more difficult.

V. SIMULATION METHOD AND RESULTS

We assume spherical monodisperse colloidal particles im-
mersed in an aqueous MgCl2 solution. Unless otherwise
noted we used the parameters from �21�. The radius of the
particles is a=0.735 
m. The surface potential is �0
=40 mV. We use the discrete element method �5,6� to simu-
late aggregate structure evolution. The main idea of this
method is to track the trajectories of all primary particles by
solving Newton’s equations of motion numerically. In gen-
eral the state of the particle system is given by the particle
positions 
r1 ,r2 , . . . ,rN�, velocities 
v1 ,v2 , . . . ,vn�, and by
the angular velocities 
�1 ,�2 , . . . ,�n�. Note that there is no
need to track the particles’ orientation angles as we content
ourselves with spherical particles. For the interactions be-
tween the fluid and the particles we use the free draining
approximation: Every particle experiences the unperturbated

flow field as if no other particle were in the flow. The drag
force and torque acting on the ith particle is then given by
Stokes formulas �29�

Fdrag,i = 6��a�vi − u�ri�� , �25�

Mdrag,i = 8��a3��i − ��ri�� . �26�

With �, vi, and u�ri� being the dynamic viscosity of the
carrier fluid, the velocity of ith particle, and the fluid velocity
at the position of ith particle, respectively. �=1 /2� �u is
the vorticity of the fluid velocity field. For the considered
particles, effects of inertia can surely be neglected. There-
fore, the particle dynamic is governed by the overdamped
equations of motion,

ṙi =
1

6��a
Fi + u�ri� , �27�

�i =
1

8��a3Mi + ��ri� . �28�

The forces Fi and the torques Mi include all interaction ef-
fects acting on the ith particle. For solving the equations of
motion we use Heun’s method, which has a global error of
order �t2 and is similar to the velocity-Verlet method, often
used in molecular dynamics and DEM simulations �30�. Note
that the velocity-Verlet method itself is explicitly designed
for solving Newton’s equations of motion and cannot be used
in overdamped dynamics. In principle, we can use the force
models described above to simulate the colloid. However,
from the slope of the potential plot �Fig. 1� a computational
problem becomes apparent. In the neighborhood of the po-
tential minimum the interaction forces change rapidly on
very small length scales. Therefore, it is necessary to solve
the equations of motion with very small time steps to track
the details of motion and avoid instabilities of the numerical
solution. We found that the magnitude of time steps must
approximately be 10−9 s to track particle motion correctly.
However, if two particles are bonded to each other, the
center-center distance remains approximately constant and
only the angular orientation of the particles can change sig-
nificantly. In order to avoid the need of such small time steps
we introduce a constraint if the distance between two par-
ticles i and j becomes smaller than a critical distance dc. The
equations of motion are then solved with the constraint �ri
−r j � =dc. For solving the constrained equations of motion,
we adopted the RATTLE algorithm derived by Andersen
�31�, which fulfills the constraint up to a given tolerance
�tol�, to Heun’s method. In this paper we used dc=1.1 nm
and tol equal to 0.1 nm. By careful investigation of numeri-
cal results we found that the value of dc has a negligible
effect on the results to be presented below as long as dc is
much smaller than the primary particles’ radius a. With the
chosen parameters we were able to use time steps of the
order of 10−6 s, which leads to remarkable improvements in
simulation time. However, the time needed by the Anderson
algorithm is proportional to the number of bonds in the ag-
gregate, and especially for large compact structures, the com-
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putation time may grow fast with the number of particles
used in the simulation.

In order to reproduce the results of Pantina and Furst, we
performed simulations where a linear chain of particles is
bended. We applied an external force FBend directed perpen-
dicular to the chain of particles to the middle particle. We
compensate this force by applying −FBend /2 on the terminal
particles of the chain. Then we run the simulation until the
static shape is achieved. Note that the value of the fluid vis-
cosity has no influence on the static solution, but only on the
time needed to achieve it. Figure 4 shows simulated deflec-
tion curves for an aggregate comprising of 11 particles for
different spring stiffness kt=0.69,1.1,1.7,3.4 mN /m. These
values correspond to the measured �0 for different MgCl2
concentrations �150, 250, 375, 500 mM, respectively� �21�.
All four curves are well described by Eq. �1� �solid lines�
with EI obtained from Eq. �20�.

Figure 5 shows typical deflection vs force curves. Here
the measured value of �0=0.13 N /m for a 150 mM MgCl2
concentration was used �21�. For small deflections, the ag-
gregate is bended similar to a rigid rod as described above. In
that regime the deflection vs force curve shows a linear be-
havior. If the bending force exceeds a critical value, rear-
rangement of the particles occurs. Beyond this point, the
particles form a near triangular structure. The simulation re-
sults in the linear regime and the critical force where the
rearrangement occurs are in agreement with the experimental
data presented in �21� �Fig. 2�. Note that for experimental
reasons the relevant part of the data presented by �21� are on
a deflection interval of approximately. 1.5–2 
m. The rea-
son is some tortouisity in the chains, which must be unbend
before the linear elongation regime starts �35�. The simulated
behavior after reaching rearrangement is different from the
experimental data. This is due to the fact that the terminal
particles in the experiment are trapped by optical tweezers
while in the simulation only a force perpendicular to the
linear chain direction is applied. The behavior of both setups
is comparable as long as the particles’ displacements in x
direction are small. However, this is no longer the case if the

rearrangement to triangular structures has occurred.
Finally, we used our simulation to track the time evolution

of an aggregate comprising 200 primary particles in a resting
fluid. The initial aggregate was obtained by diffusion-limited
cluster particle aggregation �32�. We compared the results by
using the classical DLVO forces only with the results ob-
tained using our tangential-force model. Figure 6 shows the
initial aggregate and the restructured aggregate after 25 s us-
ing DLVO forces only. It is remarkable that even in a resting
fluid the aggregate collapses to a more compact structure.
This behavior obviously is a result of the used force models.
The van der Waals forces act over a relatively long range. As
there is no resistance of single particle bonds against bending
moments, the bonded particles can freely reorient. This be-
havior contradicts the observation that fractal structure are
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FIG. 4. Simulated shape of a bended 11-particle aggregate for
different material parameters. The used tangential stiffness are kt

=0.785 mN /m �circles�, kt=1.1 mN /m �crosses�, kt=1.7 mN /m
�squares�, and kt=3.4 mN /m �diamonds�. The symbols are simula-
tion results and the lines are obtained from �1�.
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FIG. 5. Typical deflection-force curves for a 11-particle �upper
line� and a 23-particle aggregate �lower curve�. The parameters for
the tangential-force model are k=0.69 mN /m and �max=30.48 nm
obtained from measured data in �21� for a 150 MgCl2 solution. The
dashed line shows the experimentally obtained linear part of the
deflection-force curve taken from a data plot �Fig. 2� presented by
�21�.

FIG. 6. �Color online� Compaction of an aggregate using central
forces only. �a� The start configuration, generated by diffusion-
limited aggregation. �b� The configuration after a simulated time
period of 25 s, the structure is significantly more compact than the
starting configuration.
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often stable over long times even in moderate shear flows
�33,34�. This indicates that assuming purely central forces is
an over-simplification which hinders the prediction of realis-
tic structure evolution. Under the same conditions, but using
the introduced tangential-force model, the compaction does
not occur. In order to quantify the compaction of the aggre-
gate we count the number of neighboring particles for each
particle. The average number of neighbors is used as a mea-
sure for the compactness. Particles are considered to be
neighbors if their surface-surface distance is below 10 nm.
Note that we deliberately do not use the fractal dimension as
a measure for compactness because the aggregate loses the
property of self-similarity during the compaction process.
Figure 7 shows the time evolution of the average number of
neighbors for the case of using DLVO forces only and for the
case of using DLVO augmented with our tangential model.
In case of using DLVO only, the number of neighbors grows
continuously, while the compaction of the aggregate is neg-
ligible if the tangential model is used.

VI. SUMMARY AND CONCLUSION

In this work we have introduced a model for tangential
interaction forces applicable in computer simulations. Our
tangential-force model is capable of supporting bending mo-
ments. This is an important quality as it has been recently
shown experimentally that colloidal bonds actually support
bending moments �21�. Our model is based on two tangential
springs acting between bonded particles. The time evolution
of these springs is determined by the relative tangential ve-
locity between the particles. The spring elongation is con-
strained to a maximum elongation to account for sliding ef-
fects. The model contains two parameters: The stiffness of
the springs and the maximum elongation. We showed that
both parameters can be determined directly from the experi-
ments shown in �21� and simulations using our model are
able to reproduce the experimental observations. We com-
pared our model to former models which were used in com-
puter simulations and are capable of supporting bending mo-
ments. Furthermore, we showed that even in the case of
simulating a fractal aggregate in a resting fluid, models with-

out tangential forces lead to an unrealistic collapse of the
aggregate. Using our tangential-force model can remedy that
flaw.
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APPENDIX A: DETERMINATION OF THE EQUILIBRIUM
BENDING ENERGY IN LINEAR STRUCTURES

In order to determine the bending energy in a linear struc-
ture of particles we consider three particles l, i, and j of a
structure which undergoes deformations as sketched in Fig.
8. The torque balance for particle i follows from Eq. �15�,

0 = 2akt��il � nil + �ij � nij� . �A1�

Assuming small deformations, Eq. �A1� can be rewritten as a
scalar equation,

�il − �ij = 0. �A2�

Under the assumption that all deflections are small and no
plastic deformation occurs during deformation �i.e., no
spring length in the system exceeded �max� one finds from
Eq. �13�,

�il = 2a���l − ��i� , �A3�

�ij = 2a��� j + ��i� . �A4�

Introducing this in Eq. �A2� and solving the resulting equa-
tion for ��i leads to

��i = 1
2 ���l − �� j� . �A5�

The energy stored in the springs �il and �ij is given by
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FIG. 7. Time evolution of the average number of neighbors. The
solid line shows simulation results where DLVO forces only were
considered. The dashed line displays data obtained from simulations
where the tangential-force model was applied.
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FIG. 8. Sketch for the calculation of the bending energy. The
initial configuration is shown by solid lines. After the deformation
process the three particles have new positions and orientations,
shown by the dashed lines. The particles l and j are reoriented
relative to particle i by the angles ��l and ��i, and particle i was
rotated around its center by the angle ��i. The springs �ij and �il are
deformed due to the particle motion.
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Ei = 1
2kt��il

2 + �ij
2 � . �A6�

Introducing �A3� and �A4� in �A6� leads to the equation

Ei = 2a2kt���l
2 + �� j

2 + 2��i��� j − ��l� + 2��i
2� . �A7�

By introducing Eq. �A5� in �A7� one obtains

Ei = a2kt���l + �� j�2. �A8�

This in turn can be expressed as the change of the angle
between the bond of particles l and i and particles i and j,
�=��1+��2. Therefore, we obtain

Ei = a2kt�2. �A9�

By adding Ei for all particles in the chain one gets the whole
elastic energy of the structure, except the contribution from
rods rigidly connected to terminal particles to a particle
within the structure. Therefore, Ei can be understood as the
energy per particle in an elastic deformed linear structure of
colloidal particles.

APPENDIX B: DETERMINATION OF THE EQUILIBRIUM
SHAPE

In order to calculate the shape of a bended chain of par-
ticles as described in Sec. IV B, we minimize the elastic
energy stored in such an elastic chain. From symmetry rea-
sons it is sufficient to consider only one-half of the chain. As
shown in Fig. 9 the change in the angle of the bonds con-
nected to the nth particle is denoted as �n. The bending
energy per particle is therefore given by �A9�,

En = a2kt�n
2. �B1�

The elastic energy stored in the whole chain is therefore

E = 2
i=1

N−1

a2kt�n
2, �B2�

where N is the number of particles in one-half of the chain.
In equilibrium this energy should be minimal. The posi-

tion of the nth particle is

yn = − 2a
i=1

n

sin�
j=1

i

� j� . �B3�

Assuming small total deflection this reduces to

yn = − 2a
i=1

n


j=1

i

� j . �B4�

Assuming that the total deflection of the rod is �s we have a
constraint for the energy minimization,

�s = 2a
i=1

N−1


j=1

i

� j . �B5�

Using the technique of Lagrangian multiplier we must mini-
mize the quantity,

E = 
i=1

N−1

2a2kt�n
2 − 	�2a

i=1

N−1


j=1

i

� j + �s� , �B6�

where 	 is the Lagrangian multiplier. To minimize E one
must solve

0 =
dE

d�m
= 4a2kt�m − 2	a

i=1

N−1


j=1

i

� j,m, �B7�

where � j,m is the Kronecker symbol which is equal to one if
j=m and zero elsewhere. The solution of this equation is

�m =
	�N − m�

2akt
. �B8�

Introducing this in the constraint �B5� one finds after some
algebra

	

kt
�1

3
N3 −

1

2
N2 +

1

6
N� = �s . �B9�

Under neglecting all powers of N smaller than 3 one finds

	 =
3kt�s

N3 , �B10�

and by introducing that in Eq. �B8�,

�m =
3

2

�s

aN3 �N − m� . �B11�

Introducing this in Eq. �B4�, using N=L /4a, m=xm /a, and
neglecting all terms that vanish for a→0 one finds

ym =
�s

L3 �6xm
2 − 4�xm�3� . �B12�

Introducing �B8� in �B2� results in an expression for the elas-
tic energy as a function of N or L, respectively, and �s. The
bending force is related to that energy by

FBend =
dE

d�s
. �B13�

Now one can eliminate �s. After introducing �s in �B12� the
elongation is found,

ym =
FBend

8a3k
�L

4
xm

2 −
1

6
�xm�3� . �B14�
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FIG. 9. Sketch for the calculation of the equilibrium shape.
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